

Designation: B496 - 16 (Reapproved 2021)

Standard Specification for Compact Round Concentric-Lay-Stranded Copper Conductors¹

This standard is issued under the fixed designation B496; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification covers bare compact round concentric-lay-stranded conductors made from uncoated round copper wires for general use for electrical purposes. These conductors shall be constructed with a central core surrounded by one or more layers of helically laid compacted wires (Explanatory Note 1 and Note 2).
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.2.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:²
 - **B3** Specification for Soft or Annealed Copper Wire
 - B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors
 - B354 Terminology Relating to Uninsulated Metallic Electrical Conductors

3. Ordering Information

- 3.1 Orders for material under this specification shall include the following information:
 - 3.1.1 Quantity of each size (Table 1),
- 3.1.2 Conductor size; circular-mil area or AWG, (Section 6 and Table 1),
 - 3.1.3 Packaging (Section 15), if required,
 - 3.1.4 Special package marking, and
 - 3.1.5 Place of inspection (Section 14).

4. Joints

- 4.1 Welds and brazes may be made in rods or in wires prior to final drawing.
- 4.2 Welds and brazes may be made in the individual round drawn wires for compact conductors, but shall not be closer together than 1 ft (300 mm) for conductor of 19 wires or less or closer than 1 ft (300 mm) in a layer for conductor of more than 19 wires.
- 4.3 No joint nor splice shall be made in a compact-stranded conductor as a whole.

5. Lay

- 5.1 The length of lay of the outer layer shall not be less than 8 nor more than 16 times the outside diameter of the completed conductor. The maximum length of lay for compact conductors AWG 2 (33.6 mm²) and smaller shall be 17.5 times the outside diameter of the conductor.
- 5.2 The direction of lay of the outer layer shall be left-hand, and it shall be reversed in successive layers, unidirectional, or unilay.

6. Construction

- 6.1 The construction of the compact round concentric-lay-stranded conductors shall be as shown in Table 1.
- 6.2 The starting round copper wires used in the fabrication of the compact round conductor shall be of such diameter as to produce a finished conductor having a nominal cross-sectional area and diameter as prescribed in Table 1.

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.04 on Conductors of Copper and Copper Alloys.

Current edition approved Oct. 1, 2021. Published October 2021. Originally approved in 1969. Last previous edition approved in 2016 as B496 – 16. DOI: 10.1520/B0496-16R21.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

TABLE 1 Construction Requirements of Compact Round Concentric-Lay-Stranded Copper Conductors

Co	Conductor Size			Nominal Compact Conductor Diameter		Nominal Mass,	Nominal Mass,	Nominal DC Resistance at 20 °C	
cmil	AWG	mm ²	Wires	in.	mm	π 0001 /αι	kg/km	Ω/1000 ft	Ω/km
1 500 000		760	91 ^{A,B}	1.299	33.0	4631	6892	0.00705	0.0231
1 250 000		633	91 ^{A,B}	1.184	30.1	3859	5743	0.00846	0.0278
1 100 000		557	91 ^{A,B}	1.112	28.2	3396	5054	0.00962	0.0316
1 000 000		507	61 ^C	1.060	26.9	3086	4590	0.0106	0.0347
900 000		456	61 ^C	0.999	25.4	2780	4140	0.0118	0.0386
800 000		405	61 ^C	0.938	23.8	2469	3680	0.0132	0.0433
750 000		380	61 ^C	0.908	23.0	2316	3450	0.0141	0.0462
700 000		355	61 ^C	0.877	22.3	2160	3220	0.0151	0.0495
650 000		329	61 ^C	0.845	21.4	2006	2990	0.0163	0.0535
600 000		304	61 ^C	0.813	20.6	1850	2760	0.0176	0.0577
550 000		279	61 ^C	0.775	19.7	1700	2530	0.0192	0.0630
500 000		253	37 ^D	0.736	18.7	1542	2300	0.0212	0.0695
450 000		228	37 ^D	0.700	17.8	1390	2070	0.0235	0.0770
400 000		203	37 ^D	0.659	16.7	1236	1840	0.0264	0.0865
350 000		177	37 ^D	0.616	15.7	1080	1610	0.0302	0.0990
300 000		152	37 ^D	0.570	14.5	925	1380	0.0353	0.116
250 000		127	37 ^D	0.520	13.2	772	1150	0.0423	0.139
211 600	4/0	107	19 ^{<i>E</i>}	0.475	12.1	653	972	0.0500	0.164
167 800	3/0	85.0	19 ^{<i>E</i>}	0.423	10.8	518	771	0.0630	0.206
133 100	2/0	67.4	19 ^{<i>E</i>}	0.376	9.57	411	611	0.0795	0.261
105 600	1/0	53.5	19 ^E	0.336	8.55	326	485	0.100	0.328
83 690	1	42.4	19 ^E	0.299	7.60	259	385	0.126	0.413
66 360	2	33.6	7	0.268	6.81	205	305	0.159	0.521
41 740	4	21.2	7	0.213	5.41	129	192	0.253	0.830
26 240	6	13.3	7	0.169	4.29	80.9	121	0.403	1.32
16 510	8	8.37	7	0.134	3.40	51.0	75.9	0.641	2.10

^A 85 wires minimum.

7. Density

7.1 For the purpose of calculating linear densities, cross sections, and so forth, the density of the copper shall be taken as $8.89 \text{ g/cm}^3 (0.32117 \text{ lb/in.}^3)$ at 20 °C.

8. Mass and Resistance

- 8.1 The mass per unit length and dc electrical resistance of a compact round conductor are greater than the total of these characteristics of the compressed wires composing the finished conductor, depending upon the lay. The standard increment of mass per unit length and electrical resistance shall be taken as 2%. The nominal mass per unit length and dc resistance are shown in Table 1. When the dc resistance is measured at other than $20\ ^{\circ}\text{C}$, it shall be corrected by using the multiplying factors given in Table 2.
- 8.2 In cases where the lay is definitely known, the increment may be calculated if desired (Explanatory Note 3).
- 8.3 For conductors to be used in covered or insulated wires or cables, direct current (DC) resistance measurement may be used instead of the method outlined in Section 9, to determine compliance with this specification.

9. Variation in Area

9.1 The cross-sectional area of the compact round conductor shall be not less than 98 % of the cross-sectional area as specified in Column 1 of Table 1.

TABLE 2 Temperature Correction Factors for Conductor Resistance

Temperature, °C	Multiplying Factor for Conversion to 20 °C				
0	1.085				
5	1.063				
10	1.041				
15	1.020				
20	1.000				
25	0.981				
30	0.962				
35	0.944				
40	0.927				
45	0.911				
50	0.895				
55	0.879				
60	0.864				
65	0.850				
70	0.836				
75	0.822				
80	0.809				
85	0.797				
90	0.784				

9.2 The manufacturer shall determine the cross-sectional area by Test Method B263. In applying this method, the increment in mass per unit length resulting from stranding may be the applicable value specified in 9.1 or may be calculated from the measured dimensions of the sample under test. In case of question regarding area compliance, the actual mass per unit length increment due to stranding shall be calculated.

^B As agreed upon between the manufacturer and the customer, these sizes may be produced with a 61 to 58 wire construction of the appropriate wire size.

^C 58 wires minimum.

^D 35 wires minimum.

E 18 wires minimum.